Toward intelligent intrusion prediction for wireless sensor networks using three-layer brain-like learning

Jun Wu*, Song Liu, Zhenyu Zhou, Ming Zhan

*この研究の対応する著者

研究成果査読

4 被引用数 (Scopus)

抄録

The intrusion prediction for wireless sensor networks (WSNs) is an unresolved problem. Hence, the current intrusion detection schemes cannot provide enough security for WSNs, which poses a number of security challenges in WSNs. In many mission-critical applications, such as battle field, even though the intrusion detection systems (IDSs) without prediction capability could detect the malicious activities afterwards, the damages to the WSNs have been generated and could hardly be restored. In addition, sensor nodes usually are resource constrained, which limits the direct adoption of expensive intrusion prediction algorithm. To address the above challenges, we propose an intelligent intrusion prediction scheme that is able to enforce accurate intrusion prediction. The proposed scheme exploits a novel three-layer brain-like hierarchical learning framework, tailors, and adapts it for WSNs with both performance and security requirements. The implementation system of the proposed scheme is designed based on agent technology. Moreover, an attack experiment is done for getting training and test data set. Experiment results show that the proposed scheme has several advantages in terms of efficiency of implementation and high prediction rate. To our best knowledge, this paper is the first to realize intrusion prediction for WSNs.

本文言語English
論文番号243841
ジャーナルInternational Journal of Distributed Sensor Networks
2012
DOI
出版ステータスPublished - 2012

ASJC Scopus subject areas

  • 工学(全般)
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Toward intelligent intrusion prediction for wireless sensor networks using three-layer brain-like learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル