Transfer Learning of Language-independent End-to-end ASR with Language Model Fusion

Hirofumi Inaguma, Jaejin Cho, Murali Karthick Baskar, Tatsuya Kawahara, Shinji Watanabe

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

This work explores better adaptation methods to low-resource languages using an external language model (LM) under the framework of transfer learning. We first build a language-independent ASR system in a unified sequence-to-sequence (S2S) architecture with a shared vocabulary among all languages. During adaptation, we perform LM fusion transfer, where an external LM is integrated into the decoder network of the attention-based S2S model in the whole adaptation stage, to effectively incorporate linguistic context of the target language. We also investigate various seed models for transfer learning. Experimental evaluations using the IARPA BABEL data set show that LM fusion transfer improves performances on all target five languages compared with simple transfer learning when the external text data is available. Our final system drastically reduces the performance gap from the hybrid systems.

本文言語English
ホスト出版物のタイトル2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ6096-6100
ページ数5
ISBN(電子版)9781479981311
DOI
出版ステータスPublished - 2019 5
外部発表はい
イベント44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
継続期間: 2019 5 122019 5 17

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2019-May
ISSN(印刷版)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
国/地域United Kingdom
CityBrighton
Period19/5/1219/5/17

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Transfer Learning of Language-independent End-to-end ASR with Language Model Fusion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル