Transient stability multi swing step-out prediction with online data mining

Takuya Omi, Hiroto Kakisaka, Shinichi Iwamoto

    研究成果: Article査読

    2 被引用数 (Scopus)

    抄録

    Recently, electric power systems become more complex and that makes it more difficult to control power systems. Due to development of WAMS(Wide Area Measurement System), power system data are available online. In this paper, we propose a novel method that can predict transient stability multi swing step-out using anomaly detection with data mining. Especially we focus our attention on the theory of ChangeFinder which uses SDAR algorithm and the two step learning model. The forgetting parameter r used in SDAR is set by supervised learning. Active powers obtained by transient stability simulations are inputted to ChangeFinder and the proposed method can detect multi swing step-out. We verify the validity of the proposed method by simulations on the IEEJ 10 machine 47 bus-system.

    本文言語English
    ページ(範囲)137-144
    ページ数8
    ジャーナルIEEJ Transactions on Power and Energy
    136
    2
    DOI
    出版ステータスPublished - 2016

    ASJC Scopus subject areas

    • 電子工学および電気工学
    • エネルギー工学および電力技術

    フィンガープリント

    「Transient stability multi swing step-out prediction with online data mining」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル