Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi

X. D. Xu, P. Liu, Z. Tang, A. Hirata, S. X. Song, T. G. Nieh, P. K. Liaw, C. T. Liu, M. W. Chen

研究成果: Article

39 引用 (Scopus)

抜粋

Structural characterization of dislocations and dislocation reactions in a face-centered cubic high entropy alloy was conducted using the state-of-the-art spherical aberration corrected transmission electron microscopy. We experimentally measured the stacking fault energy of the high entropy alloy from the atomic images and diffraction contrast of dislocation cores. The low stacking fault energy results in widely dissociated dislocations and extensive dislocation reactions, which leads to the formation of immobile Lomer and Lomer-Cottrell dislocation locks. These dislocation locks act as both dislocation barriers and sources and are responsible for the significant work hardening with a large hardening rate in the alloy. Based on the atomic-scale characterization and classical dislocation theory, a simple equation was derived to describe the work hardening behavior of the high entropy alloy in the early-stage of plastic deformation.

元の言語English
ページ(範囲)107-115
ページ数9
ジャーナルActa Materialia
144
DOI
出版物ステータスPublished - 2018 2 1

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

フィンガープリント Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al<sub>0.1</sub>CoCrFeNi' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用