TY - GEN
T1 - TRC-Unet
T2 - 26th International Conference on Pattern Recognition, ICPR 2022
AU - Wang, Jiazhe
AU - Osamu, Yoshie
AU - Shimizu, Koichi
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Imaging blood vessel networks is useful in many biomedical applications, such as injection-assist, cancer detection, various surgery, and vein identification. In NIR (near-infrared) transillumination imaging, we can visualize the subcutaneous blood vessel network. However, such images are severely blurred by the strong scattering of body tissue, and it remains challenging for most models to accurately segment these blurred images. In addition, the convolution operation in the deep learning approach means that it extracts a mixture of blurred edges and clear centers, resulting in gradual distortion during upsampling. In this paper, we propose a novel and efficient deep learning model called TRC-Unet for segmenting blurred NIR images. The transformer connection (TRC) block extracts global spatial information from different scales by adaptively suppressing scattering and increasing the clarity of features. Our proposed transformer feature fusion (TFF) module closes the gap between the highly semantic feature maps of CNN and the adaptive fuzzy transformer output to enable a precise reconstruction of the segmentation. We evaluated TRC-Unet on both a simulated blurred DRIVE dataset and a NIR vessel dataset, and we achieved competitive results. (i.e., 83.86% Dice score on DRIVE and an average boost of 4.6% on simulated images at different depths).
AB - Imaging blood vessel networks is useful in many biomedical applications, such as injection-assist, cancer detection, various surgery, and vein identification. In NIR (near-infrared) transillumination imaging, we can visualize the subcutaneous blood vessel network. However, such images are severely blurred by the strong scattering of body tissue, and it remains challenging for most models to accurately segment these blurred images. In addition, the convolution operation in the deep learning approach means that it extracts a mixture of blurred edges and clear centers, resulting in gradual distortion during upsampling. In this paper, we propose a novel and efficient deep learning model called TRC-Unet for segmenting blurred NIR images. The transformer connection (TRC) block extracts global spatial information from different scales by adaptively suppressing scattering and increasing the clarity of features. Our proposed transformer feature fusion (TFF) module closes the gap between the highly semantic feature maps of CNN and the adaptive fuzzy transformer output to enable a precise reconstruction of the segmentation. We evaluated TRC-Unet on both a simulated blurred DRIVE dataset and a NIR vessel dataset, and we achieved competitive results. (i.e., 83.86% Dice score on DRIVE and an average boost of 4.6% on simulated images at different depths).
UR - http://www.scopus.com/inward/record.url?scp=85143601775&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143601775&partnerID=8YFLogxK
U2 - 10.1109/ICPR56361.2022.9956727
DO - 10.1109/ICPR56361.2022.9956727
M3 - Conference contribution
AN - SCOPUS:85143601775
T3 - Proceedings - International Conference on Pattern Recognition
SP - 4211
EP - 4218
BT - 2022 26th International Conference on Pattern Recognition, ICPR 2022
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 21 August 2022 through 25 August 2022
ER -