Truncated t-adic symmetric multiple zeta values and double shuffle relations

Masataka Ono, Shin ichiro Seki, Shuji Yamamoto

研究成果: Article査読

抄録

We study a refinement of the symmetric multiple zeta value, called the t-adic symmetric multiple zeta value, by considering its finite truncation. More precisely, two kinds of regularizations (harmonic and shuffle) give two kinds of the t-adic symmetric multiple zeta values, thus we introduce two kinds of truncations correspondingly. Then we show that our truncations tend to the corresponding t-adic symmetric multiple zeta values, and satisfy the harmonic and shuffle relations, respectively. This gives a new proof of the double shuffle relations for t-adic symmetric multiple zeta values, first proved by Jarossay. In order to prove the shuffle relation, we develop the theory of truncated t-adic symmetric multiple zeta values associated with 2-colored rooted trees. Finally, we discuss a refinement of Kaneko–Zagier’s conjecture and the t-adic symmetric multiple zeta values of Mordell–Tornheim type.

本文言語English
論文番号15
ジャーナルResearch in Number Theory
7
1
DOI
出版ステータスPublished - 2021 3
外部発表はい

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「Truncated t-adic symmetric multiple zeta values and double shuffle relations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル