Turbulence in diffusion replicator equation

Kenji Orihashi*, Yoji Aizawa

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Dynamical behaviors in the diffusion replicator equation of three species are numerically studied. We point out the significant role of the heteroclinic cycle in the equation, and analyze the details of the turbulent solution that appeared in this system. Firstly, the bifurcation diagram for a certain parameter setting is drawn. Then it is shown that the turbulence appears with the supercritical Hopf bifurcation of a stationary uniform solution and it disappears under a subcritical-type bifurcation. Secondly, the statistical property of the turbulence near the supercritical Hopf onset point is analyzed precisely. Further, the correlation lengths and correlation times obey some characteristic scaling laws.

本文言語English
ページ(範囲)3053-3060
ページ数8
ジャーナルPhysica D: Nonlinear Phenomena
237
23
DOI
出版ステータスPublished - 2008 12月 1

ASJC Scopus subject areas

  • 凝縮系物理学
  • 統計物理学および非線形物理学

フィンガープリント

「Turbulence in diffusion replicator equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル