TY - JOUR
T1 - Two-cardinal versions of weak compactness
T2 - Partitions of pairs
AU - Matet, Pierre
AU - Usuba, Toshimichi
PY - 2012/1
Y1 - 2012/1
N2 - We study various partition properties on Pκ(λ). Our main result asserts that if λ<λ<κ=λ<κ, then (p(NShκ,λ<κ))+→(NSSκ,λ+)2, where p:Pκ(λ<κ)→Pκ(λ) is defined by p(x)=x∩λ.
AB - We study various partition properties on Pκ(λ). Our main result asserts that if λ<λ<κ=λ<κ, then (p(NShκ,λ<κ))+→(NSSκ,λ+)2, where p:Pκ(λ<κ)→Pκ(λ) is defined by p(x)=x∩λ.
KW - 03E02
KW - 03E55
KW - Partition relation
KW - Pκ(λ)
KW - Weakly compact cardinal
UR - http://www.scopus.com/inward/record.url?scp=80053986577&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053986577&partnerID=8YFLogxK
U2 - 10.1016/j.apal.2011.08.001
DO - 10.1016/j.apal.2011.08.001
M3 - Article
AN - SCOPUS:80053986577
VL - 163
SP - 1
EP - 22
JO - Annals of Pure and Applied Logic
JF - Annals of Pure and Applied Logic
SN - 0168-0072
IS - 1
ER -