Two remarks on periodic solutions of Hamilton-Jacobi equations

Hitoshi Ishii, Hiroyoshi Mitake

    研究成果: Chapter

    抄録

    We show firstly the equivalence between existence of a periodic solution of the Hamilton-Jacobi equation 'formula presented' is a bounded domain of 'formula presented', with the Dirichlet boundary condition 'formula presented' and that of a subsolution of the stationary problem 'formula presented' under the assumptions that the function 'formula presented' is periodic in t and H is coercive. Here 'formula presented' denotes the average of f over the period. This proposition is a variant of a recent result for 'formula presented' due to Bostan-Namah, and we give a different and simpler approach to such an equivalence. Secondly, we establish that any periodic solution u(x, t) of the problem, ut + H(x, Du) = 0 in 'formula presented' and 'formula presented', is constant in t on the Aubry set for H. Here H is assumed to be convex, coercive and strictly convex in a sense.

    本文言語English
    ホスト出版物のタイトルRecent Progress on Reaction-Diffusion Systems and Viscosity Solutions
    出版社World Scientific Publishing Co.
    ページ97-119
    ページ数23
    ISBN(印刷版)9789812834744, 9812834737, 9789812834737
    DOI
    出版ステータスPublished - 2009 1 1

    ASJC Scopus subject areas

    • Mathematics(all)

    フィンガープリント 「Two remarks on periodic solutions of Hamilton-Jacobi equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル