Ultrasonographic diagnosis of cirrhosis based on preprocessing using pyramid recurrent neural network

Jianming Lu, Jiang Liu, Xueqin Zhao, Takashi Yahagi

研究成果: Article査読

抄録

In this paper, a pyramid recurrent neural network is applied to characterize the hepatic parenchymal diseases in ultrasonic B-scan texture. The cirrhotic parenchymal diseases are classified into 4 types according to the size of hypoechoic nodular lesions. The B-mode patterns are wavelet transformed, and then the compressed data are feed into a pyramid neural network to diagnose the type of cirrhotic diseases. Compared with the 3-layer neural networks, the performance of the proposed pyramid recurrent neural network is improved by utilizing the lower layer effectively. The simulation result shows that the proposed system is suitable for diagnosis of cirrhosis diseases.

本文言語English
ページ(範囲)1358-1365+11
ジャーナルIEEJ Transactions on Electronics, Information and Systems
127
9
DOI
出版ステータスPublished - 2007

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

フィンガープリント 「Ultrasonographic diagnosis of cirrhosis based on preprocessing using pyramid recurrent neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル