Umibato: Estimation of time-varying microbial interaction using continuous-time regression hidden Markov model

Shion Hosoda*, Tsukasa Fukunaga, Michiaki Hamada

*この研究の対応する著者

研究成果: Article査読

抄録

Motivation: Accumulating evidence has highlighted the importance of microbial interaction networks. Methods have been developed for estimating microbial interaction networks, of which the generalized Lotka-Volterra equation (gLVE)-based method can estimate a directed interaction network. The previous gLVE-based method for estimating microbial interaction networks did not consider time-varying interactions. Results: In this study, we developed unsupervised learning-based microbial interaction inference method using Bayesian estimation (Umibato), a method for estimating time-varying microbial interactions. The Umibato algorithm comprises Gaussian process regression (GPR) and a new Bayesian probabilistic model, the continuous-time regression hidden Markov model (CTRHMM). Growth rates are estimated by GPR, and interaction networks are estimated by CTRHMM. CTRHMM can estimate time-varying interaction networks using interaction states, which are defined as hidden variables. Umibato outperformed the existing methods on synthetic datasets. In addition, it yielded reasonable estimations in experiments on a mouse gut microbiota dataset, thus providing novel insights into the relationship between consumed diets and the gut microbiota.

本文言語English
ページ(範囲)I16-I24
ジャーナルBioinformatics
37
DOI
出版ステータスPublished - 2021 7 1

ASJC Scopus subject areas

  • 統計学および確率
  • 生化学
  • 分子生物学
  • コンピュータ サイエンスの応用
  • 計算理論と計算数学
  • 計算数学

フィンガープリント

「Umibato: Estimation of time-varying microbial interaction using continuous-time regression hidden Markov model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル