Unified dual-radix architecture for scalable montgomery multiplications in GF(P) and GF(2n)

Kazuyuki Tanimura, Ryuta Nara, Shunitsu Kohara, Youhua Shi, Nozomu Togawa, Masao Yanagisawa, Tatsuo Ohtsuki

研究成果: Article査読

抄録

Modular multiplication is the most dominant arithmetic operation in elliptic curve cryptography (ECC), that is a type of publickey cryptography. Montgomery multiplier is commonly used to compute the modular multiplications and requires scalability because the bit length of operands varies depending on its security level. In addition, ECC is performed in GF(P) or GF(2n), and unified architecture for multipliers in GF(P) and GF(2n) is required. However, in previous works, changing frequency is necessary to deal with delay-time difference between GF ( P) and GF(2n) multipliers because the critical path of the GF(P) multiplier is longer. This paper proposes unified dual-radix architecture for scalable Montgomery multiplications in GF(P) and GF(2n). This proposed architecture unifies four parallel radix-216 multipliers in GF(P) and a radix-264 multiplier in GF(2n) into a single unit. Applying lower radix to GF(P) multiplier shortens its critical path and makes it possible to compute the operands in the two fields using the same multiplier at the same frequency so that clock dividers to deal with the delay-time difference are not required. Moreover, parallel architecture in GF(P) reduces the clock cycles increased by dual-radix approach. Consequently, the proposed architecture achieves to compute a GF(P) 256-bit Montgomery multiplication in 0.28 μs. The implementation result shows that the area of the proposal is almost the same as that of previous works: 39 kgates.

本文言語English
ページ(範囲)2304-2317
ページ数14
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E92-A
9
DOI
出版ステータスPublished - 2009 9月

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Unified dual-radix architecture for scalable montgomery multiplications in GF(P) and GF(2n)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル