Uniqueness of standing-waves for a non-linear schrödinger equation with three pure-power combinations in dimension one

Daniele Garrisi, Vladimir Georgiev

研究成果: Conference contribution

抄録

We show that symmetric and positive profiles of ground-state standing-wave of the non-linear Schrödinger equation are non-degenerate and unique up to a translation of the argument and multiplication by complex numbers in the unit sphere. The non-linear term is a combination of two or three pure-powers. The class of non-linearities satisfying the mentioned properties can be extended beyond two or three power combinations. Specifically, it is sufficient that an Euler differential inequality is satisfied and that a certain auxiliary function is such that the first local maximum is also an absolute maximum.

本文言語English
ホスト出版物のタイトルNonlinear Dispersive Waves and Fluids
編集者Shijun Zheng, Jerry Bona, Geng Chen, Tuoc Van Phan, Marius Beceanu, Avy Soffer
出版社American Mathematical Society
ページ137-148
ページ数12
ISBN(印刷版)9781470441098
DOI
出版ステータスPublished - 2019
イベントAMS Special Session on Spectral Calculus and Quasilinear Partial Differential Equations and PDE Analysis on Fluid Flows, 2017 - Atlanta, United States
継続期間: 2017 1 52017 1 7

出版物シリーズ

名前Contemporary Mathematics
725
ISSN(印刷版)0271-4132
ISSN(電子版)1098-3627

Conference

ConferenceAMS Special Session on Spectral Calculus and Quasilinear Partial Differential Equations and PDE Analysis on Fluid Flows, 2017
国/地域United States
CityAtlanta
Period17/1/517/1/7

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Uniqueness of standing-waves for a non-linear schrödinger equation with three pure-power combinations in dimension one」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル