Universal Criticality in Reservoir Computing Using Asynchronous Cellular Automata

Daisuke Uragami, Yukio Pegio Gunji

研究成果: Article査読

抄録

Elementary cellular automata (ECAs) generate critical spacetime patterns in a few local rules, which are expected to have advantages in reservoir computing (RC). However, previous studies have not revealed the advantages of critical spacetime patterns in RC. In this paper, we focus on the distractor’s length in the time series data for learning and clarify the advantages of the critical spacetime patterns. Furthermore, we propose asynchronously tuned ECAs (AT_ECAs) to generate univer-sally critical spacetime patterns in many local rules. Based on the results achieved in this study, we propose RC based on AT_ECAs. Moreover, we show that the universal criticality of AT_ECAs is effective for learning time series data.

本文言語English
ページ(範囲)103-121
ページ数19
ジャーナルComplex Systems
31
1
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 制御およびシステム工学
  • コンピュータ サイエンス(全般)

フィンガープリント

「Universal Criticality in Reservoir Computing Using Asynchronous Cellular Automata」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル