Unsupervised Learning for Stereo Depth Estimation using Efficient Correspondence Matching

Hui Wenbin, Kamata Sei-Ichiro

研究成果: Conference contribution

抄録

To avoid using costly ground-truth, several recent methods formulate the unsupervised depth estimation problem as the task of disparity estimation. However, most of them for monocular depth estimation cannot perform explicit depth maps, while even some methods for stereo depth estimation cannot efficiently use stereo-view information. In this work, we provide a novel cost volume construction approach (matching cost layer) to extract easy-to-learn cost volume by matching feature correspondences between stereo images, which can satisfy the unsupervised learning strategy better. We also propose a new network architecture that learns more reliable spatial location information of objects from fully fused stereo features. Extensive experiments of our method on the KITTI datasets demonstrate its superiority over the state-of-the-art methods.

本文言語English
ホスト出版物のタイトルICAIP 2021 - 2021 5th International Conference on Advances in Image Processing
出版社Association for Computing Machinery
ページ30-34
ページ数5
ISBN(電子版)9781450385183
DOI
出版ステータスPublished - 2021 11月 12
イベント5th International Conference on Advances in Image Processing, ICAIP 2021 - Virtual, Online, China
継続期間: 2021 11月 122021 11月 14

出版物シリーズ

名前ACM International Conference Proceeding Series

Conference

Conference5th International Conference on Advances in Image Processing, ICAIP 2021
国/地域China
CityVirtual, Online
Period21/11/1221/11/14

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識
  • ソフトウェア

フィンガープリント

「Unsupervised Learning for Stereo Depth Estimation using Efficient Correspondence Matching」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル