### 抜粋

In this note, we consider the Cauchy problem for the semilinear heat equation in a homogeneous stratified group G of homogeneous dimension Q and with power nonlinearity |u|^{p}. In this framework, the heat operator is given by â_{t} Δ_{H}, where Δ_{H} is the sub-Laplacian on G We prove the nonexistence of global in time solutions for exponents in the sub-Fujita case, that is for 1 < p ≤ 1 + 2/Q, under suitable integral sign assumptions for the Cauchy data. Besides, we derive upper bound estimates for the lifespan of local in time solutions both in the subcritical case and in the critical case.

元の言語 | English |
---|---|

ホスト出版物のタイトル | 6th International Conference on New Trends in the Applications of Differential Equations in Sciences, NTADES 2019 |

編集者 | Angela Slavova |

出版者 | American Institute of Physics Inc. |

ISBN（電子版） | 9780735419049 |

DOI | |

出版物ステータス | Published - 2019 10 2 |

イベント | 6th International Conference on New Trends in the Applications of Differential Equations in Sciences, NTADES 2019 - St. Constantine and Helena, Bulgaria 継続期間: 2019 7 1 → 2019 7 4 |

### 出版物シリーズ

名前 | AIP Conference Proceedings |
---|---|

巻 | 2159 |

ISSN（印刷物） | 0094-243X |

ISSN（電子版） | 1551-7616 |

### Conference

Conference | 6th International Conference on New Trends in the Applications of Differential Equations in Sciences, NTADES 2019 |
---|---|

国 | Bulgaria |

市 | St. Constantine and Helena |

期間 | 19/7/1 → 19/7/4 |

### ASJC Scopus subject areas

- Physics and Astronomy(all)

## フィンガープリント Upper bound estimates for local in time solutions to the semilinear heat equation on stratified lie groups in the sub-Fujita case' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Georgiev, V., & Palmieri, A. (2019). Upper bound estimates for local in time solutions to the semilinear heat equation on stratified lie groups in the sub-Fujita case. ： A. Slavova (版),

*6th International Conference on New Trends in the Applications of Differential Equations in Sciences, NTADES 2019*[020003] (AIP Conference Proceedings; 巻数 2159). American Institute of Physics Inc.. https://doi.org/10.1063/1.5127465