Upper bound of the best constant of a trudinger-moser inequality and its application to A Gagliardo-Nirenberg inequality

Hideo Kozono*, Tokushi Sato, Hidemitsu Wadade

*この研究の対応する著者

研究成果: Article査読

53 被引用数 (Scopus)

抄録

We will consider a Trudinger-Moser inequality for the critical Sobolev space Hn/p,p(ℝn) with the fractional derivatives in ℝn and obtain an upper bound of the best constant of such an inequality. Moreover, by changing normalization from the homogeneous norm to the inhomogeneous one, we will give the best constant in the Hubert space H n/2,2(ℝn). As an application, we will obtain some lower bound of the best constant of a Gagliardo-Nirenberg inequality. Indiana University Mathematics Journal

本文言語English
ページ(範囲)1951-1974
ページ数24
ジャーナルIndiana University Mathematics Journal
55
6
DOI
出版ステータスPublished - 2006 12 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Upper bound of the best constant of a trudinger-moser inequality and its application to A Gagliardo-Nirenberg inequality」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル