Using multidimensional clustering based collaborative filtering approach improving recommendation diversity

Xiaohui Li, Tomohiro Murata

研究成果: Conference contribution

16 引用 (Scopus)

抜粋

In this paper, we present a hybrid recommendation approach for discovering potential preferences of individual users. The proposed approach provides a flexible solution that incorporates multidimensional clustering into a collaborative filtering recommendation model to provide a quality recommendation. This facilitates to obtain user clusters which have diverse preference from multi-view for improving effectiveness and diversity of recommendation. The presented algorithm works in three phases: data preprocessing and multidimensional clustering, choosing the appropriate clusters and recommending for the target user. The performance of proposed approach is evaluated using a public movie dataset and compared with two representative recommendation algorithms. The empirical results demonstrate that our proposed approach is likely to trade-off on increasing the diversity of recommendations while maintaining the accuracy of recommendations.

元の言語English
ホスト出版物のタイトルProceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012
ページ169-174
ページ数6
DOI
出版物ステータスPublished - 2012 12 1
イベント2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012 - Macau, China
継続期間: 2012 12 42012 12 7

出版物シリーズ

名前Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012

Conference

Conference2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012
China
Macau
期間12/12/412/12/7

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software

フィンガープリント Using multidimensional clustering based collaborative filtering approach improving recommendation diversity' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Li, X., & Murata, T. (2012). Using multidimensional clustering based collaborative filtering approach improving recommendation diversity. : Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012 (pp. 169-174). [6511671] (Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012). https://doi.org/10.1109/WI-IAT.2012.229