Variable in-hand manipulations for tactile-driven robot hand via CNN-LSTM

研究成果: Conference contribution

抄録

Performing various in-hand manipulation tasks, without learning each individual task, would enable robots to act more versatile, while reducing the effort for training. However, in general it is difficult to achieve stable in-hand manipulation, because the contact state between the fingertips becomes difficult to model, especially for a robot hand with anthropomorphically shaped fingertips. Rich tactile feedback can aid the robust task execution, but on the other hand it is challenging to process high-dimensional tactile information. In the current paper we use two fingers of the Allegro hand, and each fingertip is anthropomorphically shaped and equipped not only with 6-axis force-torque (F/T) sensors, but also with uSkin tactile sensors, which provide 24 tri-axial measurements per fingertip. A convolutional neural network is used to process the high dimensional uSkin information, and a long short-term memory (LSTM) handles the time-series information. The network is trained to generate two different motions ("twist"and "push"). The desired motion is provided as a task-parameter to the network, with twist defined as -1 and push as +1. When values between -1 and +1 are used as the task parameter, the network is able to generate untrained motions in-between the two trained motions. Thereby, we can achieve multiple untrained manipulations, and can achieve robustness with high-dimensional tactile feedback.

本文言語English
ホスト出版物のタイトル2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ9472-9479
ページ数8
ISBN(電子版)9781728162126
DOI
出版ステータスPublished - 2020 10 24
イベント2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
継続期間: 2020 10 242021 1 24

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(電子版)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
国/地域United States
CityLas Vegas
Period20/10/2421/1/24

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Variable in-hand manipulations for tactile-driven robot hand via CNN-LSTM」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル