Verified computations of eigenvalue exclosures for eigenvalue problems in Hilbert spaces

Yoshitaka Watanabe, Kaori Nagatou, Michael Plum, Mitsuhiro T. Nakao

研究成果: Article

7 引用 (Scopus)

抄録

This paper presents eigenvalue excluding methods for self-adjoint or non-self-adjoint eigenvalue problems in Hilbert spaces, including problems with partial differential operators. Eigenvalue exclosure means the determination of subsets of the complex field which do not contain eigenvalues of the given problem. Several verified eigenvalue excluding results for ordinary and partial differential operators are reported on.

元の言語English
ページ(範囲)975-992
ページ数18
ジャーナルSIAM Journal on Numerical Analysis
52
発行部数2
DOI
出版物ステータスPublished - 2014
外部発表Yes

Fingerprint

Hilbert spaces
Set theory
Eigenvalue Problem
Mathematical operators
Hilbert space
Eigenvalue
Partial Differential Operators
Adjoint Problem
Subset

ASJC Scopus subject areas

  • Numerical Analysis

これを引用

Verified computations of eigenvalue exclosures for eigenvalue problems in Hilbert spaces. / Watanabe, Yoshitaka; Nagatou, Kaori; Plum, Michael; Nakao, Mitsuhiro T.

:: SIAM Journal on Numerical Analysis, 巻 52, 番号 2, 2014, p. 975-992.

研究成果: Article

Watanabe, Yoshitaka ; Nagatou, Kaori ; Plum, Michael ; Nakao, Mitsuhiro T. / Verified computations of eigenvalue exclosures for eigenvalue problems in Hilbert spaces. :: SIAM Journal on Numerical Analysis. 2014 ; 巻 52, 番号 2. pp. 975-992.
@article{df3b607e127a4db79c83eaf4f9da3e59,
title = "Verified computations of eigenvalue exclosures for eigenvalue problems in Hilbert spaces",
abstract = "This paper presents eigenvalue excluding methods for self-adjoint or non-self-adjoint eigenvalue problems in Hilbert spaces, including problems with partial differential operators. Eigenvalue exclosure means the determination of subsets of the complex field which do not contain eigenvalues of the given problem. Several verified eigenvalue excluding results for ordinary and partial differential operators are reported on.",
keywords = "Computer-assisted proof, Differential operators, Eigenvalue excluding, Eigenvalue problems",
author = "Yoshitaka Watanabe and Kaori Nagatou and Michael Plum and Nakao, {Mitsuhiro T.}",
year = "2014",
doi = "10.1137/120894683",
language = "English",
volume = "52",
pages = "975--992",
journal = "SIAM Journal on Numerical Analysis",
issn = "0036-1429",
publisher = "Society for Industrial and Applied Mathematics Publications",
number = "2",

}

TY - JOUR

T1 - Verified computations of eigenvalue exclosures for eigenvalue problems in Hilbert spaces

AU - Watanabe, Yoshitaka

AU - Nagatou, Kaori

AU - Plum, Michael

AU - Nakao, Mitsuhiro T.

PY - 2014

Y1 - 2014

N2 - This paper presents eigenvalue excluding methods for self-adjoint or non-self-adjoint eigenvalue problems in Hilbert spaces, including problems with partial differential operators. Eigenvalue exclosure means the determination of subsets of the complex field which do not contain eigenvalues of the given problem. Several verified eigenvalue excluding results for ordinary and partial differential operators are reported on.

AB - This paper presents eigenvalue excluding methods for self-adjoint or non-self-adjoint eigenvalue problems in Hilbert spaces, including problems with partial differential operators. Eigenvalue exclosure means the determination of subsets of the complex field which do not contain eigenvalues of the given problem. Several verified eigenvalue excluding results for ordinary and partial differential operators are reported on.

KW - Computer-assisted proof

KW - Differential operators

KW - Eigenvalue excluding

KW - Eigenvalue problems

UR - http://www.scopus.com/inward/record.url?scp=84902602795&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84902602795&partnerID=8YFLogxK

U2 - 10.1137/120894683

DO - 10.1137/120894683

M3 - Article

VL - 52

SP - 975

EP - 992

JO - SIAM Journal on Numerical Analysis

JF - SIAM Journal on Numerical Analysis

SN - 0036-1429

IS - 2

ER -