Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data

Reinhard Farwig, Hideo Kozono, Hermann Sohr

研究成果: Article

31 引用 (Scopus)

抜粋

We investigate the nonstationary Navier-Stokes equations for an exterior domain Ω ⊂ R3 in a solution class Ls(0,T; L q(Ω)) of very low regularity in space and time, satisfying Serrin's condition 2/s + 3/q = 1 but not necessarily any differentiability property. The weakest possible boundary conditions, beyond the usual trace theorems, are given by u|∂Ω = g ε Ls(0,T; W-1/q,q(∂Ω)), and will be made precise in this paper. Moreover, we suppose the weakest possible divergence condition k = div u ε Ls (0,T; Lr(Ω)), where 1/3 + 1/q = 1/r.

元の言語English
ページ(範囲)127-150
ページ数24
ジャーナルJournal of the Mathematical Society of Japan
59
発行部数1
DOI
出版物ステータスPublished - 2007 1 1
外部発表Yes

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用