Viscous Flow Around a Rigid Body Performing a Time-periodic Motion

Thomas Eiter*, Mads Kyed

*この研究の対応する著者

研究成果: Article査読

抄録

The equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.

本文言語English
論文番号28
ジャーナルJournal of Mathematical Fluid Mechanics
23
1
DOI
出版ステータスPublished - 2021 2

ASJC Scopus subject areas

  • 数理物理学
  • 凝縮系物理学
  • 計算数学
  • 応用数学

フィンガープリント

「Viscous Flow Around a Rigid Body Performing a Time-periodic Motion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル