Visualization of Oxygen Partial Pressure and Numerical Simulation of a Running Polymer Electrolyte Fuel Cell with Straight Flow Channels to Elucidate Reaction Distributions

Katsuya Nagase, Haruki Motegi, Masakazu Yoneda, Yuzo Nagumo, Takeo Suga, Makoto Uchida, Junji Inukai*, Hiroyuki Nishide, Masahiro Watanabe

*この研究の対応する著者

    研究成果: Article査読

    7 被引用数 (Scopus)

    抄録

    Visualization of the oxygen partial pressure (pO(2)) was performed at the surface of a gas diffusion layer (GDL) and the upper part of the gas-flow channel of the cathode of an operating polymer electrolyte fuel cell (PEFC) with straight flow channels by using an oxygen-sensitive luminescent dye film. The gradient of pO(2) inside a channel was clearly observed, even on the GDL surface across the channel. A numerical simulation was performed to understand the reaction distributions inside the PEFC. By visualization and numerical simulation, the distributions of pO(2), the current density, water concentration, and temperature in the operating PEFC were obtained, and the relationships between the parameters were studied. Supersaturated water inside the cell was found both experimentally and computationally. pO(2) and the water concentration were concluded to be the two most important factors in determining the distribution of power generation.

    本文言語English
    ページ(範囲)1495-1501
    ページ数7
    ジャーナルChemElectroChem
    2
    10
    DOI
    出版ステータスPublished - 2015 10 1

    ASJC Scopus subject areas

    • 電気化学
    • 触媒

    フィンガープリント

    「Visualization of Oxygen Partial Pressure and Numerical Simulation of a Running Polymer Electrolyte Fuel Cell with Straight Flow Channels to Elucidate Reaction Distributions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル