Vocal imitation using physical vocal tract model

Hisashi Kanda*, Tetsuya Ogata, Kazunori Komatani, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

A vocal imitation system was developed using a computational model that supports the motor theory of speech perception. A critical problem in vocal imitation is how to generate speech sounds produced by adults, whose vocal tracts have physical properties (i.e., articulatory motions) differing from those of infants' vocal tracts. To solve this problem, a model based on the motor theory of speech perception, was constructed. This model suggests that infants simulate the speech generation by estimating their own articulatory motions in order to interpret the speech sounds of adults. Applying this model enables the vocal imitation system to estimate articulatory motions for unexperienced speech sounds that have not actually been generated by the system. The system was implemented by using Recurrent Neural Network with Parametric Bias (RNNPB) and a physical vocal tract model, called the Maeda model. Experimental results demonstrated that the system was sufficiently robust with respect to individual differences in speech sounds and could imitate unexperienced vowel sounds.

本文言語English
ホスト出版物のタイトルProceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007
ページ1846-1851
ページ数6
DOI
出版ステータスPublished - 2007 12月 1
外部発表はい
イベント2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007 - San Diego, CA, United States
継続期間: 2007 10月 292007 11月 2

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems

Conference

Conference2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007
国/地域United States
CitySan Diego, CA
Period07/10/2907/11/2

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Vocal imitation using physical vocal tract model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル