Vulnerability Dataset Construction Methods Applied To Vulnerability Detection: A Survey

Yuhao Lin, Ying Li, Mianxue Gu, Hongyu Sun, Qiuling Yue, Jinglu Hu, Chunjie Cao, Yuqing Zhang*

*この研究の対応する著者

研究成果: Conference contribution

抄録

The increasing number of security vulnerabilities has become an important problem that needs to be solved urgently in the field of software security, which means that the current vulnerability mining technology still has great potential for development. However, most of the existing AI-based vulnerability detection methods focus on designing different AI models to improve the accuracy of vulnerability detection, ignoring the fundamental problems of data-driven AI-based algorithms: first, there is a lack of sufficient high-quality vulnerability data; second, there is no unified standardized construction method to meet the standardized evaluation of different vulnerability detection models. This all greatly limits security personnel's in-depth research on vulnerabilities. In this survey, we review the current literature on building high-quality vulnerability datasets, aiming to investigate how state-of-the-art research has leveraged data mining and data processing techniques to generate vulnerability datasets to facilitate vulnerability discovery. We also identify the challenges of this new field and share our views on potential research directions.

本文言語English
ホスト出版物のタイトルProceedings - 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop Volume, DSN-W 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ141-146
ページ数6
ISBN(電子版)9781665402620
DOI
出版ステータスPublished - 2022
イベント52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop, DSN-W 2022 - Baltimore, United States
継続期間: 2022 6月 272022 6月 30

出版物シリーズ

名前Proceedings - 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop Volume, DSN-W 2022

Conference

Conference52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop, DSN-W 2022
国/地域United States
CityBaltimore
Period22/6/2722/6/30

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 情報システム
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Vulnerability Dataset Construction Methods Applied To Vulnerability Detection: A Survey」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル