Weak Harnack inequality for fully nonlinear uniformly parabolic equations with unbounded ingredients and applications

Shigeaki Koike, Andrzej Święch, Shota Tateyama*

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The weak Harnack inequality for L p -viscosity supersolutions of fully nonlinear second-order uniformly parabolic partial differential equations with unbounded coefficients and inhomogeneous terms is proved. It is shown that Hölder continuity of L p -viscosity solutions is derived from the weak Harnack inequality for L p -viscosity supersolutions. The local maximum principle for L p -viscosity subsolutions and the Harnack inequality for L p -viscosity solutions are also obtained. Several further remarks are presented when equations have superlinear growth in the first space derivatives.

本文言語English
ページ(範囲)264-289
ページ数26
ジャーナルNonlinear Analysis, Theory, Methods and Applications
185
DOI
出版ステータスPublished - 2019 8月
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Weak Harnack inequality for fully nonlinear uniformly parabolic equations with unbounded ingredients and applications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル