Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle

Horst Heck, Hyunseok Kim, Hideo Kozono

研究成果: Article査読

12 被引用数 (Scopus)

抄録

Consider the stationary Navier-Stokes equations in an exterior domain Ω ⊂ ℝ3 with smooth boundary. For every prescribed constant vector u ≠ 0 and every external force f ∈ Ḣ2-1(Ω), Leray (J. Math. Pures. Appl., 9:1-82, 1933) constructed a weak solution u with ∇u ∈ L2(Ω) and u-u ∈ L6(Ω). Here Ḣ2-1(Ω) denotes the dual space of the homogeneous Sobolev space Ḣ12(Ω). We prove that the weak solution u fulfills the additional regularity property u-u ∈ L4(Ω) and u · ∇u Ḣ2-(Ω) without any restriction on f except for f ∈ Ḣ2-1(Ω). As a consequence, it turns out that every weak solution necessarily satisfies the generalized energy equality. Moreover, we obtain a sharp a priori estimate and uniqueness result for weak solutions assuming only that {double pipe}f{double pipe}Ḣ-12(Ω) and {pipe} u{pipe} are suitably small. Our results give final affirmative answers to open questions left by Leray (J. Math. Pures. Appl., 9:1-82, 1933) about energy equality and uniqueness of weak solutions. Finally we investigate the convergence of weak solutions as u→0 in the strong norm topology, while the limiting weak solution exhibits a completely different behavior from that in the case u≠0.

本文言語English
ページ(範囲)653-681
ページ数29
ジャーナルMathematische Annalen
356
2
DOI
出版ステータスPublished - 2013 6

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル