Well-posedness for a generalized derivative nonlinear Schrödinger equation

Masayuki Hayashi, Tohru Ozawa

研究成果: Article

16 引用 (Scopus)

抜粋

We study the Cauchy problem for a generalized derivative nonlinear Schrödinger equation with the Dirichlet boundary condition. We establish the local well-posedness results in the Sobolev spaces H1 and H2. Solutions are constructed as a limit of approximate solutions by a method independent of a compactness argument. We also discuss the global existence of solutions in the energy space H1.

元の言語English
ページ(範囲)5424-5445
ページ数22
ジャーナルJournal of Differential Equations
261
発行部数10
DOI
出版物ステータスPublished - 2016 11 15
外部発表Yes

ASJC Scopus subject areas

  • Analysis

フィンガープリント Well-posedness for a generalized derivative nonlinear Schrödinger equation' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用