Well-Posedness for the Cauchy Problem for a System of Semirelativistic Equations

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa

    研究成果: Article

    2 引用 (Scopus)

    抜粋

    The local well-posedness for the Cauchy problem of a system of semirelativistic equations in one space dimension is shown in the Sobolev space H<sup>s</sup> of order s ≥ 0. We apply the standard contraction mapping theorem by using Bourgain type spaces X<sup>s,b</sup>. We also use an auxiliary space for the solution in L<sup>2</sup> = H<sup>0</sup>. We give the global well-posedness by this conservation law and the argument of the persistence of regularity.

    元の言語English
    ページ(範囲)367-391
    ページ数25
    ジャーナルCommunications in Mathematical Physics
    338
    発行部数1
    DOI
    出版物ステータスPublished - 2015 8 1

    ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Mathematical Physics

    フィンガープリント Well-Posedness for the Cauchy Problem for a System of Semirelativistic Equations' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用