Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes

Leopoldo Aguilera-Aguirre, Koa Hosoki, Attila Bacsi, Zsolt Radák, Thomas G. Wood, Steven G. Widen, Sanjiv Sur, Bill T. Ameredes, Alfredo Saavedra-Molina, Allan R. Brasier, Xueqing Ba, Istvan Boldogh*

*この研究の対応する著者

研究成果: Article査読

27 被引用数 (Scopus)

抄録

Reactive oxygen species inflict oxidative modifications on various biological molecules, including DNA. One of the most abundant DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is repaired by 8-oxoguanine DNA glycosylase-1 (OGG1) during DNA base excision repair (OGG1-BER). 8-OxoG accumulation in DNA has been associated with various pathological and aging processes, although its role is unclear. The lack of OGG1-BER in Ogg1-/- mice resulted in decreased inflammatory responses and increased susceptibility to infections and metabolic disorders. Therefore, we proposed that OGG1 and/or 8-oxoG base may have a role in immune and homeostatic processes. To test our hypothesis, we challenged mouse lungs with OGG1-BER product 8-oxoG base and changes in gene expression were determined by RNA sequencing and data were analyzed by Gene Ontology and statistical tools. RNA-Seq analysis identified 1592 differentially expressed (≥ 3-fold change) transcripts. The upregulated mRNAs were related to biological processes, including homeostatic, immune-system, macrophage activation, regulation of liquid-surface tension, and response to stimulus. These processes were mediated by chemokines, cytokines, gonadotropin-releasing hormone receptor, integrin, and interleukin signaling pathways. Taken together, these findings point to a new paradigm showing that OGG1-BER plays a role in various biological processes that may benefit the host, but when in excess could be implicated in disease and/or aging processes.

本文言語English
ページ(範囲)107-118
ページ数12
ジャーナルFree Radical Biology and Medicine
81
DOI
出版ステータスPublished - 2015 4
外部発表はい

ASJC Scopus subject areas

  • 生化学
  • 生理学(医学)

フィンガープリント

「Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル