Yokota type invariants derived from non-integral highest weight representations of q (s l 2)

Atsuhiko Mizusawa, Jun Murakami

    研究成果: Article査読

    抄録

    We define invariants for colored oriented spatial graphs by generalizing CM invariants [F. Costantino and J. Murakami, On SL(2,C) quantum 6j-symbols and their relation to the hyperbolic volume, Quantum Topol. 4 (2013) 303-351], which were defined via non-integral highest weight representations of q(sl2). We apply the same method used to define Yokota's invariants, and we call these invariants Yokota type invariants. Then, we propose a volume conjecture of the Yokota type invariants of plane graphs, which relates to volumes of hyperbolic polyhedra corresponding to the graphs, and check it numerically for some square pyramids and pentagonal pyramids.

    本文言語English
    論文番号1650054
    ジャーナルJournal of Knot Theory and its Ramifications
    25
    10
    DOI
    出版ステータスPublished - 2016 9 1

    ASJC Scopus subject areas

    • Algebra and Number Theory

    フィンガープリント 「Yokota type invariants derived from non-integral highest weight representations of q (s l 2)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル