Zakharov system in two space dimensions

Tohru Ozawa*, Kenta Tomioka

*この研究の対応する著者

研究成果: Article査読

抄録

We study the Cauchy problem for the Zakharov system in a two dimensional domain. Under natural assumptions on the data, we prove the existence and uniqueness of global solutions in H2⊕H1. The method of the construction of global solutions depends on the proof that solutions of some regularized system form a bounded sequence in H2⊕H1 and a Cauchy sequence in H1⊕L2. The method of proof is independent of the compactness argument and Brezis–Gallouet inequality.

本文言語English
論文番号112532
ジャーナルNonlinear Analysis, Theory, Methods and Applications
214
DOI
出版ステータスPublished - 2022 1

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Zakharov system in two space dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル