Zeta functions of finite groups by enumerating subgroups

研究成果: Article査読

1 被引用数 (Scopus)

抄録

For a finite group G, we consider the zeta function ζG(s) = ∑H ǀHǀ-s, where H runs over the subgroups of G. First we give simple examples of abelian p-group G and non-abelian p-group G of order pm, m≥3 for odd p (resp. 2m, m≥4) for which ζG(s) = ζG'(s). Hence we see there are many non-abelian groups whose zeta functions have symmetry and Euler product, like the case of abelian groups. On the other hand, we show that ζG(s) determines the isomorphism class of G within abelian groups, by estimating the number of subgroups of abelian p-groups. Finally we study the problem which abelian p-group is associated with a non-abelian group having the same zeta function.

本文言語English
ページ(範囲)3365-3376
ページ数12
ジャーナルCommunications in Algebra
45
8
DOI
出版ステータスPublished - 2017 8 3

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「Zeta functions of finite groups by enumerating subgroups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル